Distinctive Characteristics

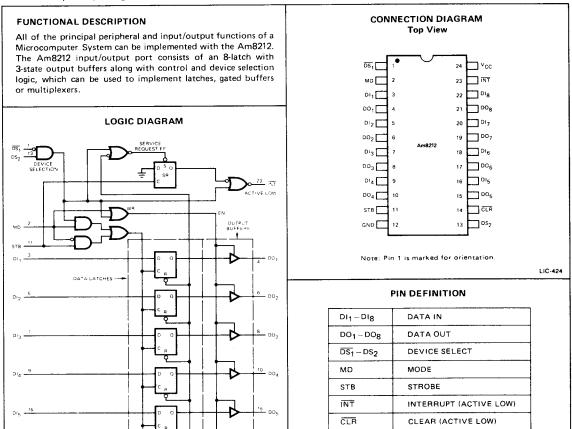
- Fully parallel, 8-bit data register and buffer replacing latches, multiplexers and buffers needed in microprocessor systems.
- 4.0V output high voltage for direct interface to MOS microprocessors, such as the Am9080A family.
- Input load current 250µA max.
- Reduces system package count

ACTIVE LOW

- Available for operation over both commercial and military temperature ranges.
- Service request flip-flop for interrupt generation
- Three-state outputs sink 15mA
- Asynchronous register clear with clock over-ride

ORDERING INFORMATION

Temperature


Range

-55°C to +125°C

0°C to +70°C

 $0^{\circ}C$ to $+70^{\circ}C$

0°C to +70°C

11

Order

Number

AM8212DM

D8212

P8212

AM8212XC

Package

Турє

Hermetic DIP

Hermetic DIP Molded DIP

Dice

FUNCTIONAL DESCRIPTION (Cont'd)

Data Latch

The 8 flip-flops that make up the data latch are of a "D" type design. The output (Q) of the flip-flop will follow the data input (D) while the clock input (C) is high. Latching will occur when the clock (C) returns low.

The data latch is cleared by an asynchronous reset input (\overline{CLR}) . (Note: Clock (C) Overrides Reset (\overline{CLR})).

Output Buffer

The outputs of the data latch (Q) are connected to 3-state, non-inverting output buffers. These buffers have a common control line (EN); this control line either enables the buffer to transmit the data from the outputs of the data latch (Q) or disables the buffer, forcing the output into a high impedance state. (3-state). This high-impedance state allows the Am8212 to be connected directly onto the microprocessor bidirectional data bus.

Control Logic

The Am8212 has control inputs \overline{DS}_1 , DS_2 , MD and STB. These inputs are used to control device selection, data latching, output buffer state and service request flip-flop.

DS1, DS2 (Device Select)

These 2 inputs are used for device selection. When \overline{DS}_1 is low and DS_2 is high $(\overline{DS}_1 \cdot DS_2)$ the device is selected. In the selected state the output buffer is enabled and the service request flip-flop (SR) is asynchronously set.

MD (Mode)

This input is used to control the state of the output buffer and to determine the source of the clock input (C) to the data latch

When MD is high (output mode) the output buffers are enabled and the source of clock (C) to the data latch is from the device selection logic ($\overline{DS}_1 \cdot DS_2$).

When MD is low (input mode) the output buffer state is determined by the device selection logic $(\overline{DS}_1 \cdot DS_2)$ and the source of clock (C) to the data latch is the STB (Strobe) input.

STB (Strobe)

This input is used as the clock (C) to the data latch for the input mode MD = 0) and to synchronously reset the service request flip-flop (SR).

Note that the SR flip-flop is negative edge triggered.

Service Request Flip-Flop

The SR flip-flop is used to generate and control interrupts in microcomputer systems. It is asynchronously set by the $\overline{\text{CLR}}$ input (active low). When the (SR) flip-flop is set it is in the non-interrupting state.

The output of the (SR) flip-flop (Q) is connected to an inverting input of a "NOR" gate. The other input to the "NOR" gate is non-inverting and is connected to the device selection logic ($\overline{\rm DS}_1$ · DS₂). The output of the "NOR" gate ($\overline{\rm INT}$) is active low (interrupting state) for connection to active low input priority generating circuits.

TRUTH TABLE

STB	MD	DS ₁ - DS ₂	Data Out Equa	
0	0	0	Three-State	
1	0	0	Three-State	
0	1	0	Data Latch	
1	1	0	Data Latch	
0	0	1	Data Latch	
1	0	1	Data In	
0	1	1	Data In	
1	1	1	Data In	

CLR	$\overline{DS_1} - DS_2$	STB	SR*	INT
0	0	0	1	1
0	1	0	1	0
1	1	~	0	0
1	1	0	1	0
1	0	0	1	1
1	1	7	1	0

CLR - Resets Data Latch

Sets SR Flip-Flop (no effect on Output Buffer)

* Internal SR Flip-Flop

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	−65°C to +150°C
Temperature (Ambient) Under Bias	–55°C to +125°C
Supply Voltage	-0.5V to +7.0V
Output Voltage	-0.5V to +7.0V
Input Voltages	-1.0V to +5.5V
Output Current (Each Output)	125mA

ELECTRICAL CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (Unless Otherwise Noted)

P8212, D8212 (COM'L) Am8212DM (MIL)

 $T_A = 0^{\circ} C \text{ to } +70^{\circ} C$ $T_A = -55^{\circ}C \text{ to } +125^{\circ}C$

 $V_{CC} = 5.0V \pm 5\%$ V_{CC} = 5.0V ± 10%

DC CHARACTERISTICS

arameters	Description	Test Conditions		Min.	Typ. (Note 1)	Max.	Units
1 _F	Input Load Current ACK, DS ₂ , CR, DI ₁ - DI ₈ Inputs	V _F = 0.45V				-0.25	mA
1F	Input Load Current MD Input	V _F = 0.45V				-0.75	mA
le l	Input Load Current DS ₁ Input	VF = 0.45V				-1.0	mA
Input Leakage Current ACK, DS, CR, DI ₁ – DI ₈ Inputs		V _R = 5.25V				10	μА
IR	Input Leakage Current MO Input	ge Current MO Input VR = 5.25V				30	μΑ
I _R	Input Leakage Current DS ₁ Input	V _R = 5.25V				40	μА
	Input Forward Voltage Clamp	I _C = -5.0mA	COM'L			-1.0	Volts
V _C			MIL.			-1.2	
***			COM'L		T	0.85	Volts
VIL	Input LOW Voltage		MIL			0.80	Voits
VIH	Input HIGH Voltage			2.0			Volts
VOL	Output LOW Voltage	IOL = 15mA				0.45	Volts
		I _{OH} = -1.0mA	COM'L	3.65	4.0		Volts
	Output HIGH Voltage		MIL	3.3	4.0		
		I _{OH} = -0.5mA	MIL	3.4	4.0		
1 _{SC}	Short Circuit Output Current	V _O = 0V		-15		-75	mA
liol	Output Leakage Current High Impedance	V _O = 0.45V/5.25V				20	μА
Icc	Power Supply Current	Note 2			90	130	mA

O OUADAOTEDICTICS (N

TERISTICS (Note 3) Description	Min.	Typ. (Note 1)	Max.	Units
Pulse Width	30	8		ns
Data to Output Delay		12	30	ns
Write Enable to Output Delay		18	40	ns
Data Set-up Time	15			ns
Data Hold Time	20			ns
Reset to Output Delay		18	40	ns
Set to Output Delay		15	30	ns
Output Enable/Disable Time		14	45	ns
Clear to Output Delay		25	55	ns
	Description Pulse Width Data to Output Delay Write Enable to Output Delay Data Set-up Time Data Hold Time Reset to Output Delay Set to Output Delay Output Enable/Disable Time	Description Min. Pulse Width 30 Data to Output Delay Write Enable to Output Delay Data Set-up Time 15 Data Hold Time 20 Reset to Output Delay Set to Output Delay Output Enable/Disable Time	Description Min. (Note 1) Pulse Width 30 8 Data to Output Delay 12 Write Enable to Output Delay 18 Data Set-up Time 15 Data Hold Time 20 Reset to Output Delay 18 Set to Output Delay 15 Output Enable/Disable Time 14	Description Min. (Note 1) Max. Pulse Width 30 8 Data to Output Delay 12 30 Write Enable to Output Delay 18 40 Data Set-up Time 15

CAPACITANCE (Note 4)

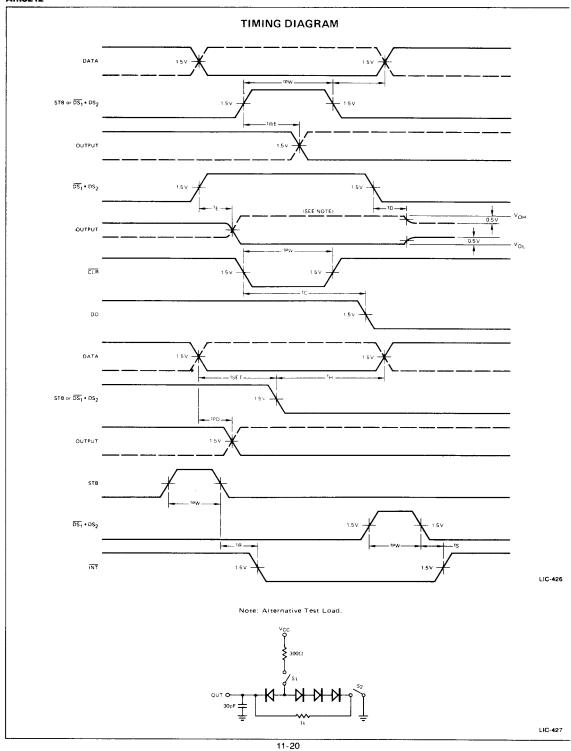
 $F = 1.0 MHz, V_{BIAS} = 2.5 V, V_{CC} = +5.0 V, T_{A} = 25^{\circ}C$

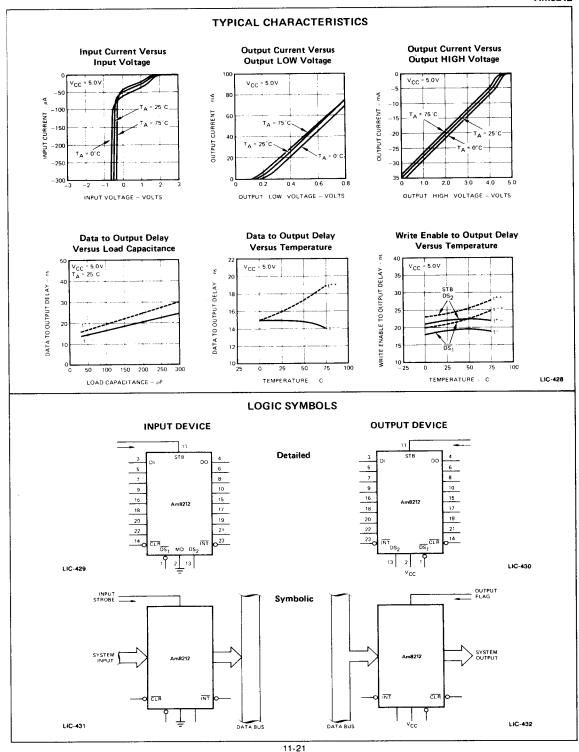

arameters	Description	Тур.	Max.	Units	
CIN	DS ₁ MD Input Capacitance	9.0	12	pF	
CIN	DS ₂ , CK, ACK, DI ₁ – DI ₈ Input Capacitance	5.0	9.0	pF	
COUT	DO ₁ – DO ₈ Output Capacitance	8.0	12	рF	

- Notes: 1. Typical limits are at V_{CC} = 5.0V, 25°C ambient and maximum loading.

 2. CLR = STB = HIGH; DS₁ = DS₂ = MD = LOW; all data inputs are gound, all data outputs are open.

 3. Conditions of Test: a) Input pulse amplitude = 2.5V
- - b) Input rise and fall times 5.0ns
 c) Between 1.0V and 2.0V measurements made at 1.5V with 15mA and 30pF Test Load.


4. This parameter is sampled and not 100% tested.



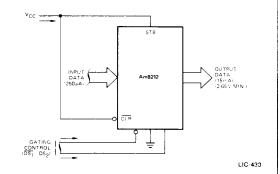
TEST LOAD (15mA and 30pF)

*Including Jig and Probe Capacitance. LIC-425

11-19

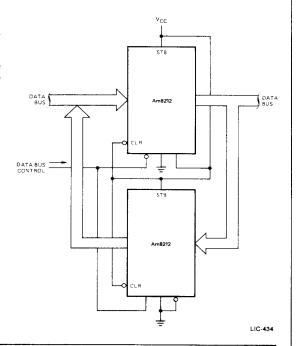
Powered by ICminer.com Electronic-Library Service CopyRight 2003

11

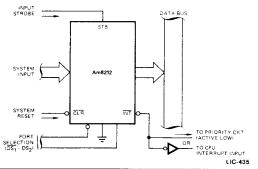

TYPICAL APPLICATIONS OF THE Am8212

GATED BUFFER (3-STATE)

By tying the mode signal low and the strobe input high, the data latch is acting as a straight through gate. The output buffers are then enabled from the device selection logic $\overline{\text{DS}}_1$ and DS_2 .


When the device selection logic is false, the outputs are 3-state.

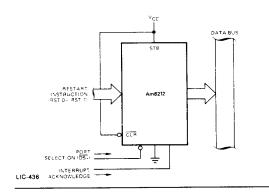
When the device selection logic is true, the input data from the system is directly transferred to the output.


Bi-Directional Bus Driver

Two Am8212s wired back to back can be used as a symmetrical drive, bi-directional bus driver. The devices are controlled by the data bus input control which is connected to $\overline{\text{DS}_1}$ on the first Am8212 and to DS_2 on the second. While one device is active, and acting as a straight through buffer the other is in its 3-state mode.

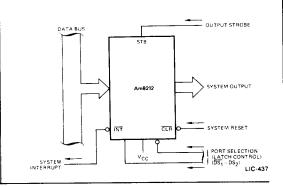
Interrupting Input Port

The Am8212 accepts a strobe from the system input source, which in turn clears the service request flip-flop and interrupts the processor. The processor then goes through a service routine, identifies the port, and causes the device selection logic to go true—enabling the system input data onto the data bus.



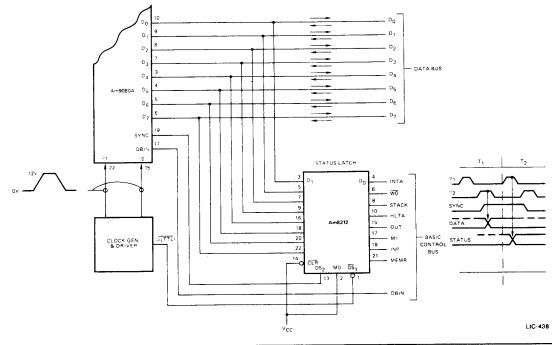
11-22

TYPICAL APPLICATIONS OF THE Am8212 (Cont'd)


Interrupt Instruction Port

The Am8212 can be used to gate the interrupt instruction, normally RESTART instructions, onto the data bus. The device is enabled from the interrupt acknowledge signal from the microprocessor and from a port selection signal. This signal is normally tied to ground. $(\overline{DS_1}$ could be used to multiplex a variety of interrupt instruction ports onto a common bus.)

Output Port (With Hand-Shaking)


The Am8212 is used to transmit data from the data bus to a system output. The output strobe could be a hand-shaking signal such as "reception of data" from the device that the system is outputting to. It in turn, can interrupt the system signifying the reception of data. The selection of the port comes from the device selection logic. ($\overline{\text{DS}_1} - \text{DS}_2$.)

Ami9080A Status Latch

The input to the Am8212 latch comes directly from the Am9080A data bus. Timing shows that when the SYNC signal is true $(\overline{DS}_1$ input), and $\wp1$ is true, $(\overline{DS}_1$ input) then the

status data will be latched into the Am8212. The mode signal is tied high so that the output on the latch is active and enabled all the time.

11